amazon

twitter

※twitterでUCニュース配信はじめました。ユーザー名 a77a フォロー自由です

2011/04/19

電池の価格破壊、LG Chem社が仕掛ける 車載用リチウムイオン電池(1)

2011/4/6 7:00
 電気自動車/async/async.do/ae=P_LK_ILTERM;g=96958A90889DE2E6E3E4E7E2E7E2E3E4E2E1E0E2E3E29BE0E2E2E2E2;dv=pc;sv=NX(EV)やプラグインハイブリッド(PHEVまたはPHV)車の本格的な普及を前に,車載用リチウム(Li)イオン2次電池/async/async.do/ae=P_LK_ILTERM;g=96958A90889DE2E6E3E5E3E3EBE2E3E4E2E1E0E2E3E29BE0E2E2E2E2;dv=pc;sv=NXの価格競争が激化している。台風の目は,LG Chem社だ。自動車メーカーに対し,携帯機器向けと容量当たりで同等の価格を提示し始めた。他の車載電池メーカーも追従せざるを得ない状況になりそうだ。本連載では,急激に変化する車載用電池の最新事情を追う。
「1社購買はしない」(トヨタ自動車代表取締役副社長の内山田竹志氏)――。

 自動車メーカーが今,車載用Liイオン2次電池の複数社購買(調達)に向けて動きだしている(図1)。トヨタ自動車は,三洋電機からLiイオン2次電池を調達するだけでなく,子会社/async/async.do/ae=P_LK_ILTERM;g=96958A90889DE2E6E3EBE0EBE5E2E3E5E2E1E0E2E3E29BE0E2E2E2E2;dv=pc;sv=NXであるプライムアースEVエナジー(PEVE)でLiイオン2次電池を量産することを表明した[注1]。
一方,Renault-日産グループのフランスRenault社は,日産自動車とNECの合弁会社であるオートモーティブエナジーサプライ(AESC)からLiイオン2次電池を全量調達するとされてきたが,韓国LG Chem社からも供給を受ける。

 同様の動きは、ほかにもある。ジーエス・ユアサ コーポレーション(GSユアサ)や三菱商事と,電池の合弁会社であるリチウムエナジー ジャパンを設立している三菱自動車は,商用タイプの電気自動車(EV)に東芝のLiイオン2次電池を採用する方針を明らかにしている。

[注1] トヨタ自動車が2010年11月に開催した「トヨタ環境技術取材会」において,内山田氏が日経エレクトロニクス誌の取材に対して1社購買をしない方針を明らかにした。
このように,大手自動車メーカーが車載用Liイオン2次電池を2社以上から調達する方針を加速させている背景には,電動車両の普及前にもかかわらず,車載用Liイオン2次電池の価格が急速に低下していることがある。

 大きな要因は二つある。一つはEVやPHEVの市場導入が急速に進んできたこと。もう一つは,LG Chem社の価格破壊である。

 最初の要因については,以下のように説明できる。これまで電動車両の主流はハイブリッド車/async/async.do/ae=P_LK_ILTERM;g=96958A90889DE2E6E3E5E3E1E0E2E3E4E2E1E0E2E3E29BE0E2E2E2E2;dv=pc;sv=NX(HEV)と考えられてきた。HEVでは,車両1台当たりのLiイオン2次電池の搭載量が0.5kWh~1.5kWh程度と少なく,電池の量産効果が得られにくかった。そのため,自動車メーカーは複数車種の電池を共有化し,使用量を増やす必要があった。その上で,電池の量産効果を享受するには,なるべく1社の電池メーカーから調達するのが望ましかった[注2]。

 ところが,EVやPHEVとなると話は違ってくる。EVは20kWh程度,PHEVは5kWh~16kWh前後と,1台当たりの搭載量はHEVの10~40倍に跳ね上がる。量販車種としての販売を前提にすれば,1車種でも電池の量産効果を得られる水準である。

 これを実行に移したのが,日産自動車である。同社は,まずEVを年間5万台生産することを前提に電池の量産計画を立て,当初から価格の引き下げを狙った。2012年には年間20万台の生産を計画しており,実現すれば電池のコストは「現状の民生用Liイオン2次電池並みになる」(日産自動車)とする。

■LG Chem社が「信じられない電池価格を提示」

 これほどの大量生産をわずか2~3年で達成し,電池コストを大幅に削減できるのか。電池関係者が首をかしげる中,さらに周囲を驚かしているのがLG Chem社である。

 同社は最近,立て続けに大手自動車メーカーからの採用を決めた。これについて,電池関係者からは「信じられない電池価格を提示しているようだ」との指摘が出ている。LG Chem社は韓国と米国に大規模な車載用電池の量産工場を建設中だが,現在提示している価格は,この量産工場で生産した際のコストを前提とした戦略的なものといわれている。

 実際,2011年2月に米国で米Society of Automotive Engineers(SAE,自動車技術会)が主催した「2011 Hybrid Vehicle Technologies Symposium + Electric Vehicle Technologies Day」では,「LG Chem社が現状でのセルの価格を,1kWh当たり350~400米ドル(約2万9400~3万3600円)と明かした」(自動車ジャーナリストの桃田健史氏)とする。この価格は,民生市場での携帯機器向けのLiイオン2次電池のそれとほぼ同等である。

 LG Chem社の存在感が増す中,同じ韓国企業でLiイオン2次電池を手掛けるSamsung SDI社やSK Innovation社も,同程度の水準まで自社の提示価格を引き下げるとの見方が強い。

[注2] 実際,トヨタ自動車がHEVに採用していたニッケル(Ni)水素2次電池については,プライムアースEVエナジー(PEVE)からの1社購買だった。

「電池は化学品だから,半導体や液晶/async/async.do/ae=P_LK_ILTERM;g=96958A90889DE2E6E3E4E6E6E2E2E3E4E2E1E0E2E3E29BE0E2E2E2E2;dv=pc;sv=NXパネルとは違う(急激に価格は下がりにくい)」というこれまでの通説はもはや当てはまらなくなるだろう。さらに,こうした状況を受けて自動車メーカーが調達先である電池メーカーを増やし,企業間を競わせる方向に動くことは間違いなく,電池メーカーはより熾烈(しれつ)な価格競争にさらされそうだ。

■中国メーカーと提携する米国

 電池メーカーがこうした状況を乗り切るには,量の確保が必須となる。その方向性を中国市場に求めたのが,米国の電池メーカーだ。積極的に中国の自動車関連メーカーとの提携を進めている。具体的には,米A123 Systems社は中国SAIC Motor社(上海汽車)と,米Ener1社は中国最大手の自動車部品メーカーであるWanxiang Group社と,それぞれ合弁会社を設立する計画である[注3]。

 中国は世界一の自動車市場に駆け上がったのに加えて,中国政府のEV政策が大きく注目されている。そのため,政府の施策によって早期に導入が進むバスやタクシー,商用車といった業務用車両向けの電池需要をまずは取り込む構えだ。米国の電池メーカーはこのほか,米国内で需要が立ち上がりつつある電力網の安定化に向けた蓄電システム用の大型電池市場への布石も打っており,量の確保を虎視眈々(たんたん)と狙う(本連載第2回の「メード・イン・アメリカの電池、その量産工場に潜入」参照)。

■気になるパナソニックの動き

 量の確保に向けて積極策を取る米国メーカーとは対照的なのが,日本の電池メーカーである。日本メーカーについては,日産自動車が日米欧で Liイオン2次電池の生産拠点を急速に立ち上げようとしている以外は海外での動きが見えてこない。三洋電機を完全子会社化したパナソニックも,その期待とは裏腹に動きが鈍い。

 三洋電機は,車載用電池向けに大型セルの量産工場を兵庫県加西市に建設し,ドイツAudi社を皮切りに,2011年中にはトヨタ自動車への供給を始めるといわれている。この大型セルをパナソニック・グループとして世界で拡販していくことを期待したいところだが,実際には,パナソニックの電池事業部門はノート・パソコン向け円筒型セル「18650」を車載向けに拡販しようと積極的に動いている。

 例えばパナソニックは,2008年にノート・パソコン用のセルを6800本用いたEV「Roadster」を発売して世界を驚かせた米Tesla Motors社と提携し,2010年11月には資本参加までした。

 もっとも,Tesla Motors社にはそもそも三洋電機が18650セルを供給していたとされており,パナソニックがわざわざ提携や資本投下する必然性が見えてこない。むしろ,パナソニックにとっての喫緊の課題は,自動車メーカーによる米欧中での現地調達にどう対応するかである。自動車産業における各国の政府の現地調達に対する要求は民生機器とは比較にならないほど厳しいため,早急に対策を打たなければならないだろう。 (次回に続く)

[注3] Ener1社は,傘下で電池製造を手掛けていたEnerDel社を統合している。

(日経エレクトロニクス 狩集浩志)

[日経エレクトロニクス2011年3月7日号の記事を基に再構成]


続きを読む...

Maxwell Technologies Doubles Ultracapacitor Production Capacity to Meet Rapidly Growing Demand for B

Maxwell Technologies, Inc. (Nasdaq: MXWL) reported today that it has more than doubled production capacity for ultracapacitor electrode, cells and modules over the past year, and is moving forward with additional capacity expansion to satisfy rapidly increasing demand for its BOOSTCAP® ultracapacitor products.

"The company has produced more than 15 million cells of all types since setting up initial high-volume production," said David Schramm, Maxwell's president and chief executive officer. "With ultracapacitor sales having grown by more than 50 percent in each of the past two years and our expectation for continuing rapid growth going forward, we need to make sure we stay a step ahead of demand."

Working with a contract assembly partner, the Company brought on line a new assembly line for its redesigned, high-volume, 350-farad "D-cell" ultracapacitor in the third quarter of 2010. Before moving D cell assembly, Maxwell had produced approximately 7 million D cells, mainly for wind turbine blade pitch mechanisms, at its Swiss production facility.

In collaboration with another contract assembly partner, the company recently completed installation of a second assembly line for its K-2 family of large cell products, and a third line is scheduled to be installed later this year. Maxwell produced its 2-millionth 3,000-farad large cell in January, and expects to deliver a third million by the end of this year. Large cells have been used mainly in hybrid transit buses for regenerative braking and torque assist, and the company is now supplying a 1,200-farad large cell to Continental AG, a global Tier 1 auto parts supplier, for a stop-start idle elimination system introduced last fall by PSA Peugeot Citroen.

A third contract manufacturer assembles Maxwell's HC family of small cell products, which range from one to 150 farads, and are used mainly in industrial electronics applications.

In December 2009, the company announced that it was expanding production capacity for its postage stamp-size, 10-farad PC-10 ultracapacitor cell to satisfy rapidly increasing demand generated by a new backup power application in solid state disk drives for enterprise computing systems. Previously, Maxwell had delivered several million PC-10s to power wireless transmitters in automated electric utility meters and other devices.

The proprietary electrode material used in all BOOSTCAP® cell types is produced only in the company's San Diego facility. Electrode capacity has been doubled over the past 12 months and will be re-doubled by mid-2012. The company also is evaluating proposals from economic development agencies in several adjacent states for location of a second electrode facility it plans to outfit and bring online in the second half of 2012.

Unlike batteries, which produce and store energy by means of a chemical reaction, Maxwell's BOOSTCAP® ultracapacitor products store energy in an electric field. This electrostatic energy storage mechanism enables ultracapacitors to charge and discharge in as little as fractions of a second, perform normally over a broad temperature range (-40 to +65C), operate reliably through one million or more charge/discharge cycles and resist shock and vibration. Maxwell offers ultracapacitor cells ranging in capacitance from one to 3,000 farads and multi-cell modules ranging from 16 to 125 volts. For more information on BOOSTCAP ultracapacitor products please visit our web site, www.Maxwell.com.

Maxwell is a leading developer and manufacturer of innovative, cost-effective energy storage and power delivery solutions. Our BOOSTCAP® ultracapacitor cells and multi-cell modules provide safe and reliable power solutions for applications in consumer and industrial electronics, transportation and telecommunications. Our CONDIS® high-voltage grading and coupling capacitors help to ensure the safety and reliability of electric utility infrastructure and other applications involving transport, distribution and measurement of high-voltage electrical energy. Our radiation-mitigated microelectronic products include power modules, memory modules and single board computers that incorporate powerful commercial silicon for superior performance and high reliability in aerospace applications. For more information, please visit our website: www.Maxwell.com.

Forward-looking statements: Statements in this news release that are "forward-looking statements" are based on current expectations and assumptions that are subject to risks and uncertainties. Actual results could differ materially because of factors such as:

* general economic conditions in the markets served by the company's products;
* development and acceptance of products based on new technologies;
* demand for original equipment manufacturers' products reaching anticipated levels;
* cost-effective manufacturing and the success of outsourced product assembly;
* the impact of competitive products and pricing;
* risks and uncertainties involved in foreign operations, including the impact of currency fluctuations;
* product liability or warranty claims in excess of the company's reserves.


For further information regarding risks and uncertainties associated with Maxwell's business, please refer to the "Management's Discussion and Analysis of Financial Condition and Results of Operations" and "Risk Factors" sections of our SEC filings, including, but not limited to, our annual report on Form 10-K and quarterly reports on Form 10-Q. Copies of these documents may be obtained by contacting Maxwell's investor relations department at (858) 503-3434 or at our investor relations website: http://investors.maxwell.com/phoenix.zhtml?c=94560&p=irol-sec. All information in this release is as of April 12, 2011. The company undertakes no duty to update any forward-looking statement to reflect actual results or changes in the company's expectations.

続きを読む...

Researchers Tackle Marines’ Portable Power Challenges


May 2011 By Grace V. Jean
The Defense Department’s research laboratories are spending millions of dollars to improve batteries and to develop new portable power technologies for dismounted troops.

The Office of Naval Research is tackling challenges specific to marines, who are expected to deploy as small units into remote locations for days at a time.

The organization this year is investing $5.5 million in research and development programs ranging from a squad-based power network and hybrid ultracapacitor technology to efficiency improvements in electronic systems and devices that harvest kinetic energy.

“The whole business of trying to provide lightweight solutions for powering electronic devices for guys in the field in the middle of nowhere is going to be an issue that’s going to be around for quite a while,” said Cliff Anderson, a program manager in the Office of Naval Research’s expeditionary maneuver warfare and combating terrorism science and technology department. “We have multiple approaches. I’m confident we’re going to make some reasonable progress in the next few years.”

Unlike the computing advancements and technology miniaturization that have been accomplished in the digital consumer world, commensurate leaps in portable energy sources have not materialized for battlefield devices because of technical challenges, safety concerns and affordability, scientists said.

The military’s workhorse battery, a lithium-sulfur dioxide-based energy system better known by its model number BA-5590, has been the standard issue in the Marine Corps and the Army. Each battery weighs a kilogram and produces 180 watt-hours. The one-time use package powers military communication devices and other electronics.

Commercial developments in rechargeable batteries and fuel cells are trickling over into the military arena, where the Army is advancing research to adapt them for battlefield application. Rechargeable batteries used to have a bad rap for their low energy density. But today they can provide nearly as much power as the non-rechargeable BA-5590.

Anderson said the government is happy to capitalize on the industry’s investments. “The reason is, the rest of the world is doing such a wonderful job,” he said. “We clap our hands because we’re going to benefit for free.”

Instead of rechargeables, Anderson has chosen to invest in “metal air” battery technology, which has not received as much attention from the commercial industry. Metal air batteries employ cathodes that scavenge oxygen molecules out of the atmosphere to help the cell produce power. Small numbers of zinc air batteries are already in military service. While they have good “specific energy,” or energy per unit weight, of about 300 watt-hours per kilogram, the problem is that the batteries are low power — they discharge that energy slowly over a period of time. That functionality works well for devices that draw a small steady stream of power, he explained. But troops also need the batteries to give rapid bursts of energy from time to time. To fulfill that duty, the zinc air batteries are manufactured in sizes larger than standard military systems.

Anderson is funding the development of energy “buffer” devices that would work with zinc air batteries to provide users with peak high power for a short period of time. These devices, called electro-chemical ultracapacitors, are a hybrid of traditional batteries, which yield low power over long periods, and conventional capacitors, which can discharge energy in high power “blasts” for a few milliseconds. “Electro-chemical ultracapacitors will never power anything just by themselves, but they can be used as buffers between a power source that has low power but high specific energy, and a device that might require high power but only for a short period of time,” said Anderson.

“The intent is to have a buffer device which will allow us to have our cake and eat it too.”

That technology would work well for radios, he added.

A typical radio consumes a lot of power when transmitting data. But when it is sitting idle waiting for a message to come in or passively “listening” to other communications, it does not require much energy. “The only time you need peak energy is for brief periods of time,” on the order of about 10 seconds, which is the typical length of a transmission, said Anderson.

The Office of Naval Research has given funding to several universities so they can improve the specific energy of these electro-chemical ultracapacitor systems. Officials are in the process of winnowing through what that investment has produced thus far.

“Hopefully there will be some interesting new technologies there,” said Anderson. Among them, program officials would like to see solutions that would produce more battery-like characteristics in the ultracapacitors.

The other power issue that troops are encountering in the field is the disparate battery models that run their portable devices. Just as in the civilian world where every digital device comes with a unique battery that requires a specific cable to recharge it, military electronics often run on a hodgepodge of energy sources.

“On the individual marine, over a dozen batteries in six different configurations are used at any given time,” said Brig. Gen. Frank L. Kelley, commander of Marine Corps Systems Command, during congressional testimony before the House Armed Services Committee. “Centralizing power, standardizing that power, and reliably distributing that power has the potential to reduce the reliance upon multiple types of batteries that are currently used in systems and carried in significant quantities as spares,” he told the tactical air and land forces subcommittee members.
Marines end up carrying spares for the extra batteries because they often power a specific device. The issue is only going to grow worse as more digital gadgets are fielded to troops, officials said. If marines run out of spare batteries for a piece of equipment, they are stuck despite having scores of other batteries that could conceivably be used if only they were compatible.

“Incompatibility costs us there,” and adds unnecessary weight to troops’ rucksacks, Anderson said. “You’re talking about guys who sometimes cut their toothbrushes in half to save weight.”

The Marine Corps recently deployed a combat battalion with technologies that put sunlight to the test for fulfilling a company’s energy requirements in the field. Initial results from the operations are being touted as a success.

Instead of investing more in photovoltaics, or solar cells, for recharging batteries, Anderson is pursuing a project called squad electric power network. “It’s a power conversion device which would make power compatible among various batteries and devices. It would solve the compatibility problem,” he said.

Air Force and Army researchers have already developed systems into which various batteries, fuel cells and devices can connect. Now the trick is integrating the concept into a wearable package so that marines can not only employ it comfortably but also afford it.

“We’re trying to take something that’s a little bit complex to use, and making it as simple and economic as possible,” said Anderson.

Roger Dougal, a professor at the University of South Carolina’s electrical engineering department, is working with ONR on a related effort to enable troops to charge up electronic devices and batteries inside the pockets of their battle uniforms.

The scientist is developing a system that incorporates an inductive power coupler to refuel gadgets through close proximity to a magnetic field.

“There are some commercial examples on the market, where you can lay a cell phone on a pad to charge it. But those things were not designed with ultra-high efficiency in mind,” said Dougal. When consumers plug the charging pad into the wall, they may not necessarily care if it consumes 15 watts to put only five watts into their cell phone. “But if you’re carrying all the energy around with you on your back, you do care about how efficient it is,” Dougal said.

For the system’s first incarnation, he intends to take a vest and incorporate into it several power coupling devices in places where troops commonly stash radios and other gear. “As long as they’re carrying the devices, they will stay charged, and when they pull them out of their pockets, they will run on the internal battery,” said Dougal.

The initial prototypes will not be intended for combat use, he added. His team is building vests that could be used in military training missions to gather more data about how all the electronic gadgets are employed. The information will help researchers upgrade handheld devices with appropriately sized rechargeable batteries.

“If you’re always recharging the internal battery, then it doesn’t need to be so big,” explained Dougal. “Part of what we’re doing now with software is making statistical representations of missions that the equipment is used on, and using that to plan the size of the battery so you have a size commensurate with a high probability of success on every mission.”

The vest would run off an internal battery, such as a fuel cell, a solar cell or other technology that could be recharged by connecting to a vehicle-based power source.

“We want to get the equipment manufacturers of all these little gadgets to where they can accept different types of power by having power conversion endemic to the device,” said Anderson. But industry has little incentive to push forth with the effort.

“Quite frankly, the technical issues are easier to solve than the bureaucratic issues of figuring out how to coordinate all these contractors who are producing devices,” he said.

In tandem with the power conversion efforts, the ONR has developed a backpack that captures and translates walking motion into power. The device contains a rack-and-pinion generator that produces five watts and as many as 20 watts of power depending on how fast troops are moving.

Program managers are collaborating with the squad electric power network investigators to connect the backpack to military radios to demonstrate the feasibility of perpetual communications. “We’re going to see how far we can go in that direction,” said Anderson. “We’re on the margin.”

By investing in a wide range of efforts, ONR officials hope to provide marines with better power options in the near future.

“It’s a dynamic playing field,” Anderson said. “What’s the ultimate answer? I don’t know. We’re just going to have to wait and see.”

Part of the challenge is that scientists have not yet found a breakthrough material that will drastically improve energy storage.

“We’ve researched that thoroughly, so we will not be likely to store energy much more compactly than we’ve got it right now,” said Dougal.

Scientists have demonstrated prototype batteries with more than 500 watt-hours per kilogram. But the technology so far is expensive and it comes with safety trade-offs. “They can become fire or explosion hazards if they’re discharged in a bad way,” said Anderson. “That may ultimately limit what we can do.”

Batteries will improve somewhat and then researchers will reach the end of the periodic table of what’s practical and affordable, he added.

There is equal gain to be had in reducing power consumption in existing devices, scientists said.

“You can get almost as much bang for your buck by reducing power consumption by making some of our circuitry better and integrating devices within themselves,” said Anderson. “We’ll probably proceed more along the lines of integrating electronics, which will help in terms of energy savings.”

Last year, the Office of Naval Research completed a study that indicated the standby current of military radios could be reduced by as much as 40 percent.

“If you can reduce the standby current by that much, that’s the equivalent of increasing the effectiveness of your batteries by that much. That would be monstrous,” said Anderson.

The technology to accomplish that is similar to what has been done in computers to make them more energy efficient — selectively turning off the circuitry and reducing power to components that are idling.

“We think we can reduce the power without affecting the use of the device. It would be transparent to the user, with no reduction to capability or capacity,” said Anderson.

The challenge is not so much in maturing the technology, which largely exists, but in transitioning it into existing or new programs, he added.

“Some decisions will have to be made, simply because the demand for wearable or hand-portable electronic devices is growing dramatically, and so the energy required to power them has got to come along and get organized as well,” said Anderson. Otherwise marines will face the same problem that all consumers contend with at home — dealing with the multitude of electronics that are powered by different chargers and different batteries.

“At home, you can handle that situation because you can plug things into the wall at night. But marines out in the middle of nowhere don’t have that luxury,” he said.

Regardless of which battery advancements occur first, the portable power issue cannot be considered in isolation, Anderson cautioned. Water must be factored in when troops leave on missions that will take them away from bases for days without resupply. “Ultimately, water becomes a real limiter. We can make batteries better, but making water better is hard,” said Anderson.






続きを読む...

Ioxus investments could bring area jobs

By Jake Palmateer, The Daily Star, Oneonta, N.Y.

April 15--ONEONTA -- Local tech firm Ioxus has secured $21 million in investments to develop its technology and expand sales, marketing and manufacturing.

The multimillion-dollar boost will help support up to 60 jobs in the community by summer and maybe more by the end of the year, Ioxus Chief Executive Officer Mark McGough said.

The company manufactures ultracapacitors for use in the transportation, alternative energy, medical, industrial and consumer product markets.

"We're excited about the area. The future is bright," McGough said.

According to Ioxus: Ultracapacitors are electronic components that excel at releasing and absorbing bursts of high power for short periods over many more charge and discharge cycles than batteries. When paired with batteries, ultracapacitors provide peak power, such as for hybrid electric vehicles to capture energy during braking. Ultracapacitors help temporarily store intermittent energy produced by solar, wind and wave energy projects, and they deliver the power to the grid when needed.

Ioxus employs 42 people, which includes 10 to 20 hired since the company closed on a deal earlier this year with Otsego County Development Corp. to use the former National Soccer Hall of Fame building as a production site, she said.

The payroll will increase to 60 people in the next few months as new production shifts go online, according to McGough.

"It could be well beyond that by the end of the year," he said.

The production line positions have benefits, and the rates are in the $10- to $12-an-hour range, according to Melissa Cohen of Metis Communications, which is handling public relations for Ioxus.

McGough said when the company set out on its drive for investors about five months ago to fund the expansion, it was expecting to raise $15 million to renovate and refit the former Soccer Hall into a "world-class production facility."

Ioxus has been a great addition to Oneonta, Oneonta Town Supervisor Robert Wood said.

"We're very pleased to hear they are going beyond their projections they released earlier," Wood said. "I think it improves our economic outlook substantially."

The utilization of the Soccer Hall building is also good news for the town of Oneonta because it involves what would otherwise be a vacant space, according to Wood.

The latest funding is coming from Energy Technology Ventures, Northwater Capital through its Northwater Intellectual Property Fund, Aster Capital and Braemer Energy Ventures.

Energy Technology Ventures is a collaboration between General Electric, NRG Energy and ConocoPhillips.

The investments are in the form of shares in the privately held company, according to McGough.

In addition to the financial benefit of owning shares in a growing company, the investors and Ioxus will benefit through technology sharing.

"They can help us in ways that are not monetary in nature," McGough said. "We can help them improve the quality of their products."

Last spring, NYSERDA awarded $600,000 to Ioxus to fund projects designed to improve ultracapacitor performance.

The manufacturers announced plans earlier this year to move into the former hall. That expansion was expected to create about 30 jobs. Most of the jobs are science, engineering and technician positions.

"Ioxus is developing lighter, more compact and cost-efficient energy storage technologies that will be relied on to complement or replace rechargeable batteries in a wide variety of consumer and industrial products, such as handheld electronic devices, hybrid electric vehicles, wind turbines, aircraft and medical equipment," Kevin Skillern, venture capital leader at GE Energy Financial Services and Energy Technology Ventures, said in a media release. "These applications align well with Energy Technology Ventures' reach across the energy sector, and GE's additional breadth in health care, industrial and aviation, offering many opportunities for commercial and technical cooperation."

-----

To see more of The Daily Star, or to subscribe to the newspaper, go to http://www.thedailystar.com.

Copyright (c) 2011, The Daily Star, Oneonta, N.Y.

Distributed by McClatchy-Tribune Information Services.

For more information about the content services offered by McClatchy-Tribune Information Services (MCT), visit www.mctinfoservices.com.

NYSE:GE,NYSE:NVE,

A service of YellowBrix, Inc.

続きを読む...

【続報】太陽光発電,風力発電,蓄電池を自律制御,福岡スマートハウスコンソーシアムが成果を披露

2011/03/19 18:30狩集 浩志=日経エレクトロニクス
図2 電源制御システムと2種類の蓄電システムを19インチのラックに搭載
福岡スマートハウスコンソーシアムは2011年3月17~18日に,福岡市で実証試験中のスマートハウスの内覧会を開催した(関連記事,図1)。同コンソーシアムは,福岡市東区にある福岡アイランドシティ内にある2階建ての戸建て住宅でスマートハウスの実証試験を実施している。住宅には,発電用にホンダソルテック製の1kWの太陽電池とゼファー製の1kWの小型風力発電機を設置している。蓄電システムとしては,ベイサン製の 1kWhのLiイオン2次電池モジュール(電圧48V)と,デンソー製の2kWhのLiイオン2次電池モジュール(電圧288V)を用いた。内覧会では,19インチのラックに2種類の蓄電システムと,アバール長崎製の電源制御システムをすべて搭載していた(図2)。電源制御システムは,系統電源と双方向で接続する系統連系インバータ,家電製品へ電力を供給するインバータ,太陽光発電向けのDC-DCコンバータ,風力発電向けのDC-DCコンバータ,蓄電池と双方向で電力をやり取りできる2個のDC-DCコンバータ(バッテリー・チャージャ)で構成されている。インバータやコンバータといったそれぞれの電源システムは,直流380Vのバスで連係させている。これによって,各電源システムは電圧値を設定するだけで,DCバス間の電圧の高低で自律的に電力を制御することができる。デモンストレーションでは,系統電源からの電力を一定にしたり,太陽光発電を停止して系統電源と蓄電システムから電力を供給したりするなど,さまざまな状況を見せていた(図3)。今回のシステムが実用化されれば,東京電力が現在実施しているような計画停電をせずに,系統電源から住宅への電力量を一定の割合で供給する総量規制を実現することが可能になる。このほか,スマートハウスにはデンソーが電気自動車(EV)やプラグイン・ハイブリッド車向けのAC200Vの充電器を設置した(図4)。今後,電源制御システムのDC380Vの電力をAC200Vに変換してEVなどに供給する予定である。これによって,再生可能エネルギーをそのまま,もしくは余剰電力を蓄電システムに蓄えてからEVを充電できる。今回の内覧会では,EVの替わりに300W程度の負荷の家電に対する電源制御を披露した。ここでは,電源制御システムのDC380Vの電力をAC200Vに変換し,それをトランスで100Vに電圧変換して家電に供給していた(図5)。


続きを読む...

ソニーが量産開始、リン酸鉄リチウムを採用した大容量Liイオン2次電池モジュール

図2 モジュールを複数多直多並列に接続することで、用途にあわせて電圧や容量のカスタマイズが可能
--------
2011/04/18 16:27久米 秀尚=日経エレクトロニクス
ソニーは2011年4月18日、リン酸鉄リチウム(LiFePO4)を正極材に使ったLiイオン2次電池モジュールの量産出荷を、同年4月下旬に開始すると発表した(図1、発表資料)。価格はオープンで、「1kWh当たり30万円前後を想定する」(ソニー 広報センター)という。初年度は3万台の販売を目指す。今回量産を開始するモジュールは、2010年6月にサンプル出荷したもの( Tech-On! 関連記事1、同2)。容量は1.2kWh。データ・サーバーや携帯電話基地局のバックアップ電源、さらには家庭用蓄電システムなどに向ける(図2)。ソニーは,LiFePO4を採用したLiイオン2次電池を,ノート・パソコン向けで標準的な,いわゆる「18650」サイズ(直径18mm×高さ65mm)の円筒型セルで既に量産しているが、今回の電池モジュールでは別の品種を採用した。円筒型ではあるものの、容量は18650セルより大きいという。生産は、ソニーエナジー・デバイスの栃木事業所(栃木県下野市)が担当する。2010年6月のサンプル出荷の際は、同社の郡山事業所(福島県郡山市)で生産していた。
残りの本文です。
続きを読む...

ヤマダ電機、家庭用コンセントで充電できるリチウム蓄電池を販売開始

2011/04/15ヤマダ電機とウエストホールディングスは4月14日、スマートハウス提案の一環として、家庭用リチウム蓄電池の販売を4月15日より開始すると発表した。今回販売を開始する家庭用リチウム蓄電池はエジソンパワーが製造したモデルで、電池容量が1000Wh と2500Whの2種類となっている。いずれも家庭用コンセントから充電可能。1000Whのモデルは3時間で充電が完了し、1回の充電で500Whの出力が可能。一般的な家庭用省エネタイプ500 リットル(約200Wh)の冷蔵庫なら、約5時間までの冷却が行える。重量は11kgで、価格は87万30円。2500Whのモデルは8時間で充電が完了し、1回の充電で1000Whの出力が可能。重量は30kgで、価格は189万円。
-----------------
ウエストHD1407)は年初来高値を更新 ヤマダ電機と住宅用リチウム蓄電池販売で需要取り込み期待高まるヤマダ電機と、住宅用リチウムイオン蓄電池の販売を15日から始めると発表したことが手掛かり材料に。大幅反発で年初来高値を更新している。ヤマダ電機との間では、太陽光発電システム・オール電化の販売に関して業務提携しているが、今回の家庭用リチウム蓄電池では、太陽光発電システムとのトータル提案を両社で行っていく方針。電力不足の長期化懸念で、補充用電源として蓄電池関連へと関心が高まっているため、需要取り込み期待が高まっている。JQスタンダードのウエストホールディングス(1407)の株価は14時27分現在、144円高の1,121円。一時は、1,127円まで上昇してSTOP高に。NSJ日本証券新聞[NSJショートライブ 2011年4月15日 14時28分 更新]

残りの本文です。
続きを読む...

2011/04/07

二次電池の代わりにスーパーキャパシタを搭載。ロシア初のHV、プーチン首相も興味津々[動画]

2011年4月6日(水) 23時00分ロシア初のハイブリッド車が誕生した。そのハイブリッド車のプロトタイプに1日、プーチン首相が試乗。メドベージェフ大統領の公邸まで、ドライブを楽しんだ。このハイブリッド車は、ロシアの大富豪Mikhail Prokhorov氏が、自ら立ち上げたベンチャー企業で開発したコンパクトカー。『Yo-mobile』と命名された。最高速を130km/hに抑えるなど性能を必要最低限に抑えることで、1万2000ドル(約100万円)のベース価格を掲げる。Yo-mobileは、二次電池の代わりにスーパーキャパシタを搭載。燃料はガソリンだけでなく、ロシアに埋蔵量が豊富な天然ガスも使用できる。燃費は約28.5km/リットルだという。同車は2012年後半、ロシアで発売予定。ボディタイプはハッチバック、クーペ、商用バンの3種類が用意される。そのプロトタイプに1日、プーチン首相が試乗。ロシア初のハイブリッド車に、プーチン首相も興味津々の映像は、ロシアのメディア、『ロシアトゥデイ』が動画共有サイトで公開している。

残りの本文です。
続きを読む...

2011/04/05

燃料ゼロ大助かり 移動太陽光発電機フル稼働 大船渡

河北新報 4月5日(火)14時11分配信
 電力復旧のめどが立っていない岩手県大船渡市周辺地区の避難所で、相模原市の光学部品製造「相光技研」(本田義広社長)が贈った移動式の太陽光発電機が活躍している。同社は3月18日、碁石コミュニティセンターと後ノ入公民館の2カ所に発電機を設置した。宇宙航空研究開発機構の関係施設がある縁から「銀河連邦」として大船渡市と交流を続けてきた相模原市から依頼を受けて、無償で協力した。発電機は一辺約1メートルの立方体で、1メートル四方の太陽光パネル5枚を広げて使う。大容量のバッテリーを搭載し、電圧100ボルト、電流30アンペアで10時間、出力できる。テレビや掃除機を動かすのに使っている同センターのリーダー役、及川宗夫さん(60)は「自家発電機は燃料をたくさん消費するため、あまり長く使用できない。これは大変助かる」と喜ぶ。同社は「約1年前に開発した時は『電力は大災害でも2、3日で復旧するから使えない製品だ』と評判が悪かった。現在、利用されているのは被災地にある2台のみで、役立ててもらえてありがたい」としている。(佐藤理史)


残りの本文です。
続きを読む...