http://gigazine.net/news/20161125-charge-mobile-seconds/
フロリダ大学の研究チームが、従来のバッテリーの充電時間と使用回数を大幅に向上させる新しいバッテリー技術の開発に成功しました。同研究チームの開発した技術を使えば、スマートフォンの電池を数秒で充電でき、かつ、3万回以上の耐久性を持つ電池の開発が可能になっています。
High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers - ACS Nano (ACS Publications)
http://pubs.acs.org/doi/abs/10.1021/acsnano.6b06111
アメリカのセントラル・フロリダ大学ナノサイエンステクノロジーセンターの研究チームは、電気二重層という物理現象を利用して蓄電量を高めた「電気二重層コンデンサ」を一般的な電池と同じように使用できるようにする技術の研究を長年続けてきました。その電気二重層コンデンサの蓄電量をリチウムイオン電池と同等に使うには、コンデンサ自体が大きくなりすぎるという問題がありました。
しかし、研究チームはバッテリーの極をグラフェンに代表される二次元状のナノ素材でコーティングする技術を発案。この技術を用いて、二次元状のナノ素材でコーティングしたワイヤーを使った電気二重層コンデンサを開発したところ、電子の高速移動が可能になり高速充電が可能で高いエネルギーとエネルギー密度を備えた電気二重層コンデンサが完成したとのことです。
研究チームが開発した技術を使えば、3万回以上充電できる耐久性を持ち、さらにスマートフォンのバッテリーであれば数秒間でフル充電できる電池の開発が可能になります。
フロリダ大学の研究チームが、従来のバッテリーの充電時間と使用回数を大幅に向上させる新しいバッテリー技術の開発に成功しました。同研究チームの開発した技術を使えば、スマートフォンの電池を数秒で充電でき、かつ、3万回以上の耐久性を持つ電池の開発が可能になっています。
High-Performance One-Body Core/Shell Nanowire Supercapacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers - ACS Nano (ACS Publications)
http://pubs.acs.org/doi/abs/10.1021/acsnano.6b06111
アメリカのセントラル・フロリダ大学ナノサイエンステクノロジーセンターの研究チームは、電気二重層という物理現象を利用して蓄電量を高めた「電気二重層コンデンサ」を一般的な電池と同じように使用できるようにする技術の研究を長年続けてきました。その電気二重層コンデンサの蓄電量をリチウムイオン電池と同等に使うには、コンデンサ自体が大きくなりすぎるという問題がありました。
しかし、研究チームはバッテリーの極をグラフェンに代表される二次元状のナノ素材でコーティングする技術を発案。この技術を用いて、二次元状のナノ素材でコーティングしたワイヤーを使った電気二重層コンデンサを開発したところ、電子の高速移動が可能になり高速充電が可能で高いエネルギーとエネルギー密度を備えた電気二重層コンデンサが完成したとのことです。
研究チームが開発した技術を使えば、3万回以上充電できる耐久性を持ち、さらにスマートフォンのバッテリーであれば数秒間でフル充電できる電池の開発が可能になります。
By www.Pixel.la Free Stock Photos
研究を率いたエリック・ヤング准教授は「二次元状のナノ素材を既存のシステムにどうやって組み合わせるかが長年の課題でしたが、我々が開発した化学合成法を使えば既存の素材と二次元状のナノ素材を適切に組み合わせることができます」と実験のブレイクスルーが化学合成にあったことを明かしています。
また、ヤング准教授は「小さな電子機器の場合であれば、我々が開発した技術はエネルギー密度・電力密度・安定性において既存の技術を大きく凌駕している」と話していますが、記事執筆現時点では実証モデル開発に成功した段階であり、商品化にはまだ長い時間がかかりそうです。
なお、研究チームは今回発明されたバッテリー技術の特許を申請している最中です。
研究を率いたエリック・ヤング准教授は「二次元状のナノ素材を既存のシステムにどうやって組み合わせるかが長年の課題でしたが、我々が開発した化学合成法を使えば既存の素材と二次元状のナノ素材を適切に組み合わせることができます」と実験のブレイクスルーが化学合成にあったことを明かしています。
また、ヤング准教授は「小さな電子機器の場合であれば、我々が開発した技術はエネルギー密度・電力密度・安定性において既存の技術を大きく凌駕している」と話していますが、記事執筆現時点では実証モデル開発に成功した段階であり、商品化にはまだ長い時間がかかりそうです。
なお、研究チームは今回発明されたバッテリー技術の特許を申請している最中です。
0 件のコメント:
コメントを投稿